
What is Test-Driven Development (TDD)? 
TDD is the practice of writing a unit test before writing any code. This can be done relatively quickly, with 
the developer writing the test, then writing the code, and then running the test, all in small increments. 
TDD ensures the code is consistently refactored for a better design. However, TDD isn’t a replacement  
for regression suites, design specifications, QA, or code reviews.

Contrary to popular opinion, Agile is not cowboy coding. If there’s no BDUF (Big Design Up Front), how do 
you ensure your coding process has some structure? TDD is one answer. 

What’s the goal of TDD? 
To write “clean code that works”. (According to Ron Jeffries, http://xprogramming.com/index.php.)

What are the benefits of TDD? 
�� Better code design
�� Earlier defect detection
�� Fewer defects in production releases
�� Significant drop in defect density
�� Disciplined, quality-focused coding practices

“A journey of a thousand miles begins with a single step, and an  
application of a thousand lines should begin with a single test.” 
Katie Dwyer

About Seapine Agile Services
Seapine Agile Services provides transformation and training 
solutions to maximize your organization’s performance. Our  
Agile consultants address your unique development and 
training needs  with a pragmatic, collaborative approach that  
is tool- and methodology-neutral. Whether your needs are  
technology- or process-related, Seapine Agile Services helps 
your organization become more innovative, while improving 
quality and lowering costs. 

Find out more at 
www.seapine.com/agileservices

Also, check out the Seapine Agile expedition at 
www.seapine.com/exploreagile 

The Agile Manifesto 
We are uncovering better ways of developing software  
by doing it and helping others do it. Through this work  
we have come to value:

Individuals and interactions over processes and tools 
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right,  
we value the items on the left more.  

Agile Manifesto, © 2001
www.agilemanifesto.org

TDD = TFD  (Test Fi rst Desi gn) + Refactor

Reference

Wr ite

te
st  that

fa
i l s

Verify  

a l l  tests

pass

Changecode



© 2011 Seapine Software, Inc. All rights reserved. www.seapine.com 
Cincinnati, Ohio  I  London, England  I  Melbourne, Australia  I  Munich, Germany

Step Activity

 Write a test to verify new or changed functionality.

  Run all tests and verify the new one fails (since it hasn’t been implemented yet).

Change the code just enough so that all tests pass. Your goal at this stage is to pass the test, 
so the code may not be elegant.

Refactor as needed to clean up the code. Verify all tests still pass after the refactor.

Repeat the process for the next change.

4

3

2

1

5

TDD Activities

Sample Unit Test: Constructor Default Values
 
/* The purpose of this test is to verify the default values 
   branchid should be INVALID_RECORD_ID, recursive should be set to true 
*/
TEST(SCMWorkingDirTestSuite_Constructor_DefaultValues)
   {
      CSCMWorkingDirListObj workDir;      
      CHECK_EQUAL(INVALID_RECORD_ID, workDir.GetBranchID());
      CHECK_EQUAL(static_cast<Boolean>(TRUE), workDir.GetRecursive());
   };

Writing a Good Unit Test
Good unit tests are the backbone of successful TDD. Keep 
the following in mind as you write unit tests:

�� Each unit test should be independent.
�� Each unit test should test one aspect or behavior and  

	 document the expected behavior.
�� Each unit test should not verify too much functionality.
�� Each unit test should not be dependent on interface. 

Working with Legacy Code
You can use TDD with your existing legacy code, but it 
can be overwhelming if the code wasn’t designed to be 
testable. Following are a few tips to help you get started: 

1.	 Refactor the code you are changing so it is testable.
2.	 Look for “code smells”—symptoms in the source code  
	 that could indicate a deeper problem.
3.	 Don’t worry about code coverage in old code.
 
To learn more, check out Working Effectively with Legacy 
Code, by Michael Feathers.
 


