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The Simple Multi Attribute Rating Technique 

(SMART) 

The SMART technique is based on a linear additive model. This means that an overall value of a given 

alternative is calculated as the total sum of the performance score (value) of each criterion (attribute) 

multiplied with the weight of that criterion. 

The main stages in the analysis are (adapted from Olson (1996)): 

• Stage 1: Identify the decision-maker(s) 

• Stage 2: Identify the issue of issues: Utility depends on the context and purpose of the decision 

• Stage 3: Identify the alternatives: This step would identify the outcomes of possible actions, a data 

gathering process. 

• Stage 4: Identify the criteria: It is important to limit the dimensions of value. This can be 

accomplished by restating and combining criteria, or by omitting less important criteria. It has been 

argued that it was not necessary to have a complete list of criteria. Fifteen were considered too 

many, and eight was considered sufficiently large. If the weight for a particular criterion is quite 

low, that criterion need not be included. There is no precise range of the number of criteria 

appropriate for decisions. 

• Stage 5: Assign values for each criteria: For decisions made by one person, this step is fairly 

straightforward. Ranking is a decision task that is easier than developing weights, for instance. This 

task is usually more difficult in group environments. However, groups including diverse opinions 

can result in a more thorough analysis of relative importance, as all sides of the issue are more 

likely to be voiced. An initial discussion could provide all group members with a common 

information base. This could be followed by identification of individual judgments of relative 

ranking. 

• Stage 6: Determine the weight of each of the criteria: The most important dimension would be 

assigned an importance of 100. The next-most-important dimension is assigned a number reflecting 

the ratio of relative importance to the most important dimension. This process is continued, 

checking implied ratios as each new judgment is made. Since this requires a growing number of 

comparisons there is a very practical need to limit the number of dimensions (objectives). It is 

expected that different individuals in the group would have different relative ratings. 

• Stage 7: Calculate a weighted average of the values assigned to each alternative: This step allows 

normalization of the relative importance into weights summing to 1.  



• Stage 8: Make a provisional decision  

• Stage 9: Perform sensitivity analysis   

In SMART, ratings of alternatives are assigned directly, in the natural scales of the criteria. For instance, 

when assessing the criterion "cost" for the choice between different road layouts, a natural scale would be 

a range between the most expensive and the cheapest road layout. In order to keep the weighting of the 

criteria and the rating of the alternatives as separate as possible, the different scales of criteria need to be 

converted into a common internal scale. In SMART, this is done mathematically by the decision-maker by 

means of a Value Function. The simplest and most widely used form of a value function method is the 

additive model, which in the most simple cases can be applied using a linear scale (e.g. going from 0 to 

100). 

SMART Exploiting Ranks (SMARTER) 

The assessment of vaIue functions and swing weights in SMART can sometimes be a difficult task, and 

decision-makers may not always be confident about it. Because of this, Edwards and Barron have suggested 

a simplified form of SMART named SMARTER (SMART Exploiting Ranks) (Roberts and Goodwin, 2002). 

Using the SMARTER technique the decision-makers places the criteria into an importance order: for 

example ‘Criterion 1 is more important than Criterion 2, which is more important than Criterion 3, which is 

more important Criterion 4’ and so on, C1 ≥ C2 ≥ C3 ≥ C4. . . . SMARTER then assigns surrogate weights 

according to the Rank Order Distribution method or one of the similar methods which are described below. 

Barron and Barret (1996) believe that generated weights may be more precise than weights produced by 

the decision-makers who may be more comfortable and confident with a simple ranking of the importance 

of each criterion swing, especially if it represents the considered outcome of a group of decision-makers. 

Therefore a number of methods that enable the ranking to be translated into ‘surrogate’ weights 

representing an approximation of the ‘true’ weights have been developed. A few of these methods are 

described below. Here �� > 0 are weights reflecting the relative importance of the ranges of the criteria 

values, where ∑ �� = 1	�
� ,  � = 1,… , � is the rank of the criteria, and n is the number of criteria in the 

decision problem. 

Rank order centroid (ROC) weights: The ROC weights are defined by (Roberts and Goodwin, 2002): 
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Rank sum (RS) weights: The RS weights are the individual ranks normalized by dividing by the sum of the 

ranks. The RS weights are defined by (Ibid): 

������ = �� + 1 − �� ��� + 1�/2� 	, � = 1,… , �  

 

Rank reciprocal (RR) weights: This method uses the reciprocal of the ranks which are normalized by dividing 

each term by the sum of the reciprocals. The RR weights are defined by (Ibid): 
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For each of these methods, the corresponding weights for each rank, for numbers of criteria ranging from n 

= 2 - 10 are listed in Table 0.1 - Table 0.3.  

Table 0.1: (ROC) weights (Roberts and Goodwin, 2002) 

Criteria 

Rank 2 3 4 5 6 7 8 9 10 

1 0.7500 0.6111 0.5208 0.4567 0.4083 0.3704 0.3397 0.3143 0.2929 

2 0.2500 0.2778 0.2708 0.2567 0.2417 0.2276 0.2147 0.2032 0.1929 

3  0.1111 0.1458 0.1567 0.1583 0.1561 0.1522 0.1477 0.1429 

4   0.0625 0.0900 0.1028 0.1085 0.1106 0.1106 0.1096 

5    0.0400 0.0611 0.0728 0.0793 0.0828 0.0846 

6     0.0278 0.0442 0.0543 0.0606 0.0646 

7      0.0204 0.0334 0.0421 0.0479 

8       0.0156 0.0262 0.0336 

9        0.0123 0.0211 

10         0.0100 

 

Table 0.2: (RS) weights (Roberts and Goodwin, 2002) 

Criteria 

Rank 2 3 4 5 6 7 8 9 10 

1 0.6667 0.5000 0.4000 0.3333 0.2857 0.2500 0.2222 0.2000 0.1818 

2 0.3333 0.3333 0.3000 0.2667 0.2381 0.2143 0.1944 0.1778 0.1636 

3  0.1667 0.2000 0.2000 0.1905 0.1786 0.1667 0.1556 0.1455 

4   0.1000 0.1333 0.1429 0.1429 0.1389 0.1333 0.1273 

5    0.0667 0.0952 0.1071 0.1111 0.1111 0.1091 

6     0.0476 0.0714 0.0833 0.0889 0.0909 

7      0.0357 0.0556 0.0667 0.0727 

8       0.0278 0.0444 0.0545 

9        0.0222 0.0364 

10         0.0182 
 

 



Table 0.3: (RR) weights (Roberts and Goodwin, 2002) 

Criteria 

Rank 2 3 4 5 6 7 8 9 10 

1 0.6667 0.5455 0.4800 0.4379 0.4082 0.3857 0.3679 0.3535 0.3414 

2 0.3333 0.2727 0.2400 0.2190 0.2041 0.1928 0.1840 0.1767 0.1707 

3  0.1818 0.1600 0.1460 0.1361 0.1286 0.1226 0.1178 0.1138 

4   0.1200 0.1095 0.1020 0.0964 0.0920 0.0884 0.0854 

5    0.0876 0.0816 0.0771 0.0736 0.0707 0.0682 

6     0.0680 0.0643 0.0613 0.0589 0.0569 

7      0.0551 0.0525 0.0505 0.0488 

8       0.0460 0.0442 0.0427 

9        0.0393 0.0379 

10         0.0341 
 

 

Rank order distribution (ROD) is a weight approximation method that assumes that valid weights can be 

elicited through direct rating. In the direct rating method the most important criterion is assigned a weight 

of 100 and the importance of the other criteria is then assessed relative to this benchmark. The ‘raw’ 

weights, ���∗� obtained are then normalized to sum to 1. Assuming that all criteria have some importance, 

this means that the ranges of the possible ‘raw’ weights will be: 

��∗ = 100, 0 < �+∗ 	≤ 100,					0 < �-∗ ≤ �+∗ 
And in general: 

	0 < ��∗ 	≤ ��.�∗ 	�where	� ≠ 1� 
These ranges can be approximated by representing all of the inequalities by less-than-or-equal-to 

expressions. The uncertainty about the ‘true’ weights can then be represented by assuming uniform 

distribution for them. To determine ROD weights for general problems it is needed to consider the 

probability distributions for the normalised weights that follow from the assumptions about the 

distributions of the raw weights. For n > 2 the density functions are a series of piecewise equations.  

The means of each rank order distribution (ROD) for n = 2 to 10 have been found mathematically and are 

displayed in Table 0.4. For further information about the calculations behind see Roberts and Goodwin 

(2002).  

 

 

 

 

 



Table 0.4: ROD weights (Roberts and Goodwin, 2002) 

Attributes 

Rank 2 3 4 5 6 7 8 9 10 

1 0.6932 0.5232 0.4180 0.3471 0.2966 0.2590 0.2292 0.2058 0.1867 

2 0.3068 0.3240 0.2986 0.2686 0.2410 0.2174 0.1977 0.1808 0.1667 

3  0.1528 0.1912 0.1955 0.1884 0.1781 0.1672 0.1565 0.1466 

4   0.0922 0.1269 0.1387 0.1406 0.1375 0.1332 0.1271 

5    0.0619 0.0908 0.1038 0.1084 0.1095 0.1081 

6     0.0445 0.0679 0.0805 0.0867 0.0893 

7      0.0334 0.0531 0.0644 0.0709 

8       0.0263 0.0425 0.0527 

9        0.0211 0.0349 

10         0.0173 

 

A graphical comparison of the ROD, ROC and RS weights for 9 criteria can be seen in Figure 0.1 (Roberts and 

Goodwin, 2002).  

 

Figure 0.1: Comparison of weights for 9 attributes (Roberts and Goodwin, 2002) 

There is a very close match between the ROD and RS weights. This matching is found whatever the number 

of criteria. Indeed, in general, the ROD weights tend towards the RS weights as the number of criteria 

increases. Thus, given that ROD weights are difficult to calculate when the number of attributes is large, a 

practical solution is to use RS weights for large criteria problems. The ROC weights depart markedly from 

both the RS and ROD weights.  

The figure also demonstrates another benefit of using ROD instead of ROC weights. ROC weights are 

‘extreme’ in that the ration of the highest to the lowest weights is so large that the lowest ranked criterion 

will only have a very marginal influence on the decision. In practice, criteria with a relative importance as 

low as this, would usually be eliminated from the decision model. The use of ROD weights goes some way 
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to reducing this extreme value problem. However, it can be argued that the inclusion of criteria with very 

low weights, e.g. 0.02, does not contribute in any way to the overall result and therefore should be omitted 

from the analysis. For a discussion of this see Barfod et al. (2011). 

Pros and cons of SMART 

Pros: The structure of the SMART method is similar to that of the traditional CBA in that the total “value” is 

calculated as a weighted sum of the impact scores. In the CBA the unit prices act as weights and the 

“impacts scores” are the quantified (not normalized) CBA impacts. This close relationship to the well-

accepted CBA method is appealing and makes the method easier to grasp for the decision maker. 

Cons: In a screening phase where some poorly performing alternatives are rejected leaving a subset of 

alternatives to be considered in more detail the SMART method is not always the right choice. This is 

because, as noted by Hobbs and Meier (2000), SMART tends to oversimplify the problem if used as a 

screening method as the top few alternatives are often very similar. Rather different weight profiles should 

be used and alternatives that perform well under each different weight profile should be picked out for 

further analysis. This also helps identify the most “robust” alternatives. The SMART method has rather high 

demands on the level of detail in input data. Value functions need to be assessed for each of the lowest-

level attributes, and weights should be given as trade-off  

In SMART analysis the direct rating method of selecting raw weights is normally used as it is cognitively 

simpler and therefore is assumed to yield more consistent and accurate judgments from the decision-

maker. These raw weights are then normalised and this normalisation process yields different theoretical 

distributions for the ranks. The means of these distributions are the ROD weights. 

The formulae for the distribution of the ROD weights become progressively more complex as the number of 

criteria increase. Since the RS weights are so easy to calculate and closely match the ROD weights for higher 

numbers of criteria it is recommended to use RS weights when working with problems involving large 

numbers of criteria, and in cases where it can be assumed that the appropriate alternative method for 

eliciting the ‘true’ weights would have been the direct rating method. 

 


